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ABSTRACT 
The present work aims at applying the ideas on the analysis of improved lumped-parameter model for transient heat 

conduction in a slab with temperature-dependent thermal conductivity. The transient temperature is found to depend on 

various model parameters, namely, Biot number, heat source parameter and time. Polynomial Approximation Method 

(PAM) has been possible to derive a unified relation for the transient thermal behavior of solid (slab and tube) with both 

internal generation and boundary heat flux.  In all the cases, a closed form solution is obtained between temperature, Biot 

number, heat source parameter and time.  

An improved lumped parameter model has been received through two point Hermite approximations for integrals. For 

directly temperature-subordinate warm conductivity, it is demonstrated by correlation with numerical arrangement of the 

first dispersed parameter model that the higher request lumped model (H1,1/H0,0 approximation) yields critical change of 

normal temperature expectation over the established lumped model. A brought together Biot number cutoff relying upon a 

solitary 

investigation has been contrasted and before numerical and logical results. A decent understanding has been gotten between 

the present forecast and the accessible result. 

Key words:  Hermite approximations, PAM, Temperature-dependent thermal conductivity, Lumped model, Nonlinear heat 

Conduction, Transient heat conduction, Biot number. 

INTRODUCTION 
In this chapter introduces the mechanism of heat transfer 

known as conduction. In the connection of building 

applications, this is more inclined to be illustrative of the 

conduct in strong than liquids. Conduction phenomena 

may be dealt with as either time-indigent or unfaltering 

satisfy. Time-subordinate conduction has been improved 

to the amazing instances of Bi << 1 and Bi >> 1. For the 

previous, the lumped method may be utilized  and as a 

part of the recent the semi-infinite method. It is important 

that in both cases these method are utilized as a part of 

functional applications in the opposite mode to gauge 

warmth exchange coefficient from a known temperature-

time history. 

 

METHODOLOGY 
According to Lumped Body models we first introduce the 

spatially averaged dimensionless temperature as follows: 

     in 0 <  < 1  for   , (1)     

                                      (2)     

We operate Eq. (1) by , using the definition of 

average temperature, Eq. (2), we get  

 

     (3) 

 

Now, the boundary conditions  

 

                           (4) 

 

 

 

 

Eq. (4) is an equivalent integral-differential formulation 

of the mathematical model with no approximation 

involved. 

Assuming that the temperature angle is adequately 

uniform over the entire spatial arrangement area, the 

traditional lumped framework examination (CLSA) is in 

light of the suspicion that the limit temperatures can be 

sensibly very much approximated by the normal 

temperature, as 

   ,                                                         

Which leads to the classical lumped model 

                                                                                       

And to be solved with the initial condition for the average 

temperature 

                                                                                                      

It can be seen that the classical model shows no influence 

of the temperature-dependent thermal conductivity.  

 Alhama and Zueco  identified four different kinds of 

problem that may occur: (i) a heating process with a 

positive temperature-dependent coefficient, k2 > 0; (ii) a 

heating process with k2 < 0; (iii) a cooling process with 

k2 > 0 and (iv) a cooling process with k2 < 0. They 

established that the universal mean Biot number limit for 

applying the lumped model can be expressed as a 

function of the dimensionless number k = ( kmax - 

kmin)/km, and the kind of process (cooling or heating), 

with km = ( kmax - kmin)/2 

       In proper choice of dimensionless parameters, the 

four kinds of problem can be reduced to two kinds of 

problem: (i)  > 0, representing cooling with a positive 

temperature-dependent coefficient b > 0 or heating with b 

< 0 and (ii)  < 0, representing cooling with b < 0 or 

heating with b > 0. The main difference between 

Alhama–Zueco’s analysis and ours lies in the choice of 

the reference temperature. While Alhama and Zueco 

always use the minimum temperature Tmin as the 
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reference temperature, we always use the surrounding 

fluid temperature T as the reference temperature 

whether cooling or heating. For a linearly temperature 

dependent thermal conductivity. 

                                                                                      

We have for a cooling process (Ti > T ) with a positive 

temperature dependent coefficient 

 (b > 0) 

     

Thus . For a cooling process 

with b < 0, we have 

        

  

with . For a heating process 

 with b > 0, we have 

    

with . 

 

It can be seen that the four kinds of problem identified by 

Alhama and Zueco [2] can be represented conveniently 

by only one dimensionless parameter , with  > 0 

representing cooling with b > 0 or heating with b < 0, and 

 < 0 representing cooling with b < 0 or heating with b > 

0. We proceed to examine the example problems given 

by Alhama and Zueco. 

Problem 1. , , k(T) = 0.9+0.2T, kmin 

= 0.9 , kmax = 1.1 , km = 1, k = 0.2  By our analysis,  = T,  

i = 1,   = 0, 

   k = 1+(2/9),   = 2/9      

 

Problem 2. , , k(T) = 1.8+0.4T, kmin 

= 1.8 , kmax = 2.2 , km = 2,  k = 0.2 By our analysis,  = T,  

i = 1,   = 0,   k = 1+(2/9),   = 2/9 

 

Problem 3.  ,k(T) = 0.9+0.02T, 

kmin = 0.9, kmax = 1.1 , km = 1,k = 0.2  By our analysis, = 

T/10,  i = 1,   = 0, 

 k = 1+(2/9),   = 2/9 

 

The difference between Alhama-Zuecos and our analysis 

is shown when examining the heating processes with a 

positive temperature-dependent coefficient (k2 > 0  or  b 

> 0). 

 

Problem 4. , , k(T) = 0.9+0.2T, kmin = 

0.9 ,  kmax = 1.1 , km = 1,  k = 0.2  By our analysis,  = (T 

– 1)/(-1),  i = 1,   = 0,    

  , 

Thus  = 2/11 

 

 

 

Problem 5. , , k(T) = 1.8+0.4T, kmin 

= 1.8 , kmax = 2.2 , km = 2,  k = 0.2  By our analysis,  = 

(T – 1)/(-1),  i = 1,   = 0,    

   , 

Thus  = 2/11 

 

Problem 6. , , k(T) = 0.9+0.02T, 

kmin = 0.9, kmax = 1.1, km = 1,k = 0.2  By our analysis,  = 

(T – 10)/(-10),  i = 1,   = 0,    

                 

, 

Thus  = 2/11 

 

It can be seen that problems 1-3 reduce to a same 

dimensionless problem with  = 2/9 and problem 4-6 

reduce to another dimensionless problem with  = -2/11 

RESULT AND DISCUSSION 
The arrangements of established and enhanced lumped 

models are indicated in even and graphical structures in 

correlation with a reference limited contrast arrangement 

of the first dispersed model, The starting limit esteem 

issue characterized by utilizing a certain limited 

distinction method, with a 201 hubs work in spatial 

discretization and a dimensionless time venture of 

0.00001 for all cases. Diverse estimations of the Biot 

number Bi and the parameter b are picked in order to 

evaluate precision of the arrangements given by lumped 

models. In Table 4.1, it is presented a comparison of the 

dimensionless average temperatures obtained by lumped 

models and the reference finite difference solution of the 

original distributed parameter model at different values 

of time, for Bi = 1.0 and  =1.0. As can be seen, the 

classical lumped model gives an error of 0.0681 at  = 

1.0, while the H0,0/H0,0 model gives an error of 0.0137 at 

 = 1.0, and the H1,1/H0.0 model yields a maximum error 

less than 0.005 for all time values. Fig.4.1 shows the 

comparison of the dimensionless average temperatures 

for Bi =2.5 and = 0.5. It can be seen that the solution 

give by the higher order improved lumped model 

(H1,1/H0,0) agrees quite well with the finite difference 

solution. 
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Table 1 

Comparison of lumped model against finite 

different solution average temperature  

at different value of time 

 

CONCLUSION 
The improved lumped parameter models are presented 

for transient heat conduction in a slab with cubicly 

temperature-dependent thermal conductivity and subject 

to convective cooling or heating. Improved lumped 

models are obtained through two point Hermite 

approximations for integrals. For linearly temperature-

dependent thermal conductivity, it is shown by 

comparison with numerical solution of the original 

distributed parameter model that the higher order lumped 

model (H1,1/H0,0 approximation) yields significant 

improvement of average temperature prediction over the 

classical lumped model. It is shown that the maximum 

relative error of the dimensionless average temperature is 

influenced predominantly by the Biot number. A unified 

Biot number limit is obtained as a function of the linear 

dependence coefficient , Bilimit = 0.523 + 1.078 for - 0.6 

    0.8. The lumped model H1,1/H0,0 is expected to 

yield maximum normalized error less 0.01 for Bi < Bilimit, 

for a given . 
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 FD 

solution 

Bi = 1.0 

CLSA 

 = 1.0 

H0,0/H0,0 H1,1/H0,0 

0.1 0.9150 0.9048 0.9157 0.9190 

0.2 0.8406 0.8187 0.8389 0.8450 

0.3 0.7730 0.7408 0.7689 0.7774 

0.4 0.7113 0.6703 0.7050 0.7156 

0.5 0.6548 0.6065 0.6466 0.6589 

0.6 0.6031 0.5488 0.5934 0.6070 

0.7 0.5557 0.4966 0.5447 0.5595 

0.8 0.5123 0.4493 0.5002 0.5159 

0.9 0.4725 0.4066 0.4595 0.4758 

1.0 0.4359 0.3679 0.4222 0.4391 

2.0 0.1985 0.1353 0.1838 0.1997 

3.0 0.0925 0.0498 0.0813 0.0926 

4.0 0.0436 0.0183 0.0363 0.0434 

5.0 0.0207 0.0067 0.0163 0.0204 


